Cisco 300-101 ExamImplementing Cisco IP Routing

Total Question: 204 Last Updated: March 27,2017
  • Updated 300-101 Dumps
  • Based on Real 300-101 Exams Scenarios
  • Free 300-101 pdf Demo Available
  • Check out our 300-101 Dumps in a new PDF format
  • Instant 300-101 download
  • Guarantee 300-101 success in first attempt
Package Select:

Questions & Answers PDF

Practice Test Software

Practice Test + PDF 30% Discount

Price: $110.95 $55.95

Buy Now Free Trial
PDF Version Software Version

100% Guarantee on Products High Success Rate, supported by our 99.3% pass rate history and money back guarantee should you fail your exam.

Yes Yes

Updated regularly Get hold of Updated Exam Materials Every time. Free updates without any extra charges to the actual exam.

Yes Yes

300-101 PDF Questions & Answers Available in a universal Adobe PDF format. Portable and printable anywhere anytime.

Yes Yes

Quality and Value Exact Exam Questions with Correct Answers, verified by Experts with years of Experience in IT Field.

Yes Yes

Customizable Testing Engine Simulates a real world exam environment to prepare you for 300-101 Success.

Yes

Unlimited Practice 300-101 Exam Re-takes Practice Until you get it right. With options to Highlight missed questions, you can analyse your mistakes and prepare for Ultimate 300-101 Success.

Yes

Special Promotion More than 30% Discount for Royal Pack.

Yes

Top Tips Of 300-101 courses

Exam Code: 300-101 (Practice Exam Latest Test Questions VCE PDF)
Exam Name: Implementing Cisco IP Routing
Certification Provider: Cisco
Free Today! Guaranteed Training- Pass 300-101 Exam.

2017 Mar 300-101 free practice exam

Q11. Refer to the exhibit. The network setup is running the RIP routing protocol. Which two events will occur following link failure between R2 and R3? (Choose two.) 

A. R2 will advertise network 192.168.2.0/27 with a hop count of 16 to R1. 

B. R2 will not send any advertisements and will remove route 192.168.2.0/27 from its routing table. 

C. R1 will reply to R2 with the advertisement for network 192.168.2.0/27 with a hop count of 16. 

D. After communication fails and after the hold-down timer expires, R1 will remove the 192.168.2.0/27 route from its routing table. 

E. R3 will not accept any further updates from R2, due to the split-horizon loop prevention mechanism. 

Answer: A,C 

Explanation: 


Q12. Which three items can you track when you use two time stamps with IP SLAs? (Choose three.) 

A. delay 

B. jitter 

C. packet loss 

D. load 

E. throughput 

F. path 

Answer: A,B,C


Q13. A network engineer initiates the ip sla responder tcp-connect command in order to gather statistics for performance gauging. Which type of statistics does the engineer see? 

A. connectionless-oriented 

B. service-oriented 

C. connection-oriented 

D. application-oriented 

Answer:

Explanation: 

Configuration Examples for IP SLAs TCP Connect Operations The following example shows

how to configure a TCP Connection-oriented operation from Device B to the Telnet port (TCP port 23) of IP

Host 1 (IP address 10.0.0.1), as shown in the "TCP Connect Operation" figure in the "Information About

the IP SLAs TCP Connect Operation" section. The operation is scheduled to start immediately. In this

example, the control protocol is disabled on the source (Device B). IP SLAs uses the control protocol to

notify the IP SLAs responder to enable the target port temporarily. This action allows the responder to reply

to the TCP Connect operation. In this example, because the target is not a Cisco device and a well- known

TCP port is used, there is no need to send the control message. Device A (target device) Configuration

configure terminal ip sla responder tcp-connect ipaddress 10.0.0.1 port 23 

Reference: http://

www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipsla/configuration/15-mt/sla-15- mt-book/ sla_tcp_conn.html


Q14. You have been asked to evaluate how EIGRP is functioning in a customer network. 

What percent of R1’s interfaces bandwidth is EIGRP allowed to use? 

A. 10 

B. 20 

C. 30 

D. 40 

Answer:

Explanation: 


Q15. You have been asked to evaluate how EIGRP is functioning in a customer network. 

Traffic from R1 to R61 s Loopback address is load shared between R1-R2-R4-R6 and R1-R3-R5-R6 paths. What is the ratio of traffic over each path? 

A. 1:1 

B. 1:5 

C. 6:8 

D. 19:80 

Answer:

Explanation: 


Avant-garde 300-101 free question:

Q16. Which three TCP enhancements can be used with TCP selective acknowledgments? (Choose three.) 

A. header compression 

B. explicit congestion notification 

C. keepalive 

D. time stamps 

E. TCP path discovery 

F. MTU window 

Answer: B,C,D 

Explanation: 

TCP Selective Acknowledgment

The TCP Selective Acknowledgment feature improves performance if multiple packets are lost from one

TCP window of data.

Prior to this feature, because of limited information available from cumulative acknowledgments, a TCP

sender could learn about only one lost packet per-round-trip

time. An aggressive sender could choose to resend packets early, but such re-sent segments might have

already been successfully received.

The TCP selective acknowledgment mechanism helps improve performance. The receiving TCP host

returns selective acknowledgment packets to the sender,

informing the sender of data that has been received. In other words, the receiver can acknowledge packets

received out of order. The sender can then resend only

missing data segments (instead of everything since the first missing packet).

Prior to selective acknowledgment, if TCP lost packets 4 and 7 out of an 8-packet window, TCP would

receive acknowledgment of only packets 1, 2, and 3. Packets

4 through 8 would need to be re-sent. With selective acknowledgment, TCP receives acknowledgment of

packets 1, 2, 3, 5, 6, and 8. Only packets 4 and 7 must be

re-sent.

TCP selective acknowledgment is used only when multiple packets are dropped within one TCP window.

There is no performance impact when the feature is

enabled but not used. Use the ip tcp selective-ack command in global configuration mode to enable TCP

selective acknowledgment.

Refer to RFC 2018 for more details about TCP selective acknowledgment.

TCP Time Stamp

The TCP time-stamp option provides improved TCP round-trip time measurements. Because the time

stamps are always sent and echoed in both directions and the time-stamp value in the header is always

changing, TCP header compression will not compress the outgoing packet. To allow TCP header

compression over a serial link, the TCP time-stamp option is disabled. Use the ip tcp timestamp command

to enable the TCP time-stamp option.

TCP Explicit Congestion Notification

The TCP Explicit Congestion Notification (ECN) feature allows an intermediate router to notify end hosts of

impending network congestion. It also provides enhanced support for TCP sessions associated with

applications, such as Telnet, web browsing, and transfer of audio and video data that are sensitive to delay

or packet loss. The benefit of this feature is the reduction of delay and packet loss in data transmissions.

Use the ip tcp ecn command in global configuration mode to enable TCP ECN.

TCP Keepalive Timer

The TCP Keepalive Timer feature provides a mechanism to identify dead connections. When a TCP

connection on a routing device is idle for too long, the device sends a TCP keepalive packet to the peer

with only the Acknowledgment (ACK) flag turned on. If a response packet (a TCP ACK packet) is not

received after the device sends a specific number of probes, the connection is considered dead and the

device initiating the probes frees resources used by the TCP connection. Reference: http://www.cisco.com/

c/en/us/td/docs/ios-xml/ios/ipapp/configuration/xe-3s/asr1000/iap-xe-3s-asr1000-book/iap-tcp.html#GUID-22A82C5F-631F-4390-9838-F2E48FFEEA01


Q17. Which two methods of deployment can you use when implementing NAT64? (Choose two.) 

A. stateless 

B. stateful 

C. manual 

D. automatic 

E. static 

F. functional 

G. dynamic 

Answer: A,B 

Explanation: 

While stateful and stateless NAT64 perform the task of translating IPv4 packets into IPv6 packets and vice

versa, there are important differences. The following

table provides a high-level overview of the most relevant differences.

Table 2. Differences Between Stateless NAT64 and Stateful NAT64

Stateless NAT64 Stateful NAT64

1:1 translation 1:N translation

No conservation of IPv4 address Conserves IPv4 address

Assures end-to-end address Uses address overloading, hence transparency and scalability lacks in endto-

end address transparency

No state or bindings created on the State or bindings are created on every translation unique translation

Requires IPv4-translatable IPv6 No requirement on the nature of IPv6 addresses assignment (mandatory

address assignment requirement)

Requires either manual or DHCPv6 Free to choose any mode of IPv6 based address assignment for IPv6

address assignment viz. Manual, hosts DHCPv6, SLAAC Reference: http://www.cisco.com/c/en/us/

products/collateral/ios-nx-os-software/enterprise-ipv6- solution/white_paper_c11-676277.html


Q18. A network engineer is trying to modify an existing active NAT configuration on an IOS router by using the following command: 

(config)# no ip nat pool dynamic-nat-pool 192.1.1.20 192.1.1.254 netmask 255.255.255.0 

Upon entering the command on the IOS router, the following message is seen on the console: 

%Dynamic Mapping in Use, Cannot remove message or the %Pool outpool in use, cannot destroy 

What is the least impactful method that the engineer can use to modify the existing IP NAT configuration? 

A. Clear the IP NAT translations using the clear ip nat traffic * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

B. Clear the IP NAT translations using the clear ip nat translation * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

C. Clear the IP NAT translations using the reload command on the router, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

D. Clear the IP NAT translations using the clear ip nat table * " command, then replace the NAT configuration quickly, before any new NAT entries are populated into the translation table due to active NAT traffic. 

Answer:

Explanation: 


Q19. Refer to the exhibit. After configuring GRE between two routers running OSPF that are connected to each other via a WAN link, a network engineer notices that the two routers cannot establish the GRE tunnel to begin the exchange of routing updates. What is the reason for this? 

A. Either a firewall between the two routers or an ACL on the router is blocking IP protocol number 47. 

B. Either a firewall between the two routers or an ACL on the router is blocking UDP 57. 

C. Either a firewall between the two routers or an ACL on the router is blocking TCP 47. 

D. Either a firewall between the two routers or an ACL on the router is blocking IP protocol number 57. 

Answer:

Explanation: 


Q20. Scenario: 

You have been asked to evaluate an OSPF network setup in a test lab and to answer questions a customer has about its operation. The customer has disabled your access to the show running-config command. 

Which of the following statements is true about the serial links that terminate in R3 

A. The R1-R3 link needs the neighbor command for the adjacency to stay up 

B. The R2-R3 link OSPF timer values are 30, 120, 120 

C. The R1-R3 link OSPF timer values should be 10,40,40 

D. R3 is responsible for flooding LSUs to all the routers on the network. 

Answer:

Explanation: 


Related 300-101 Articles